AQA

A-LEVEL

MATHEMATICS

Mechanics 1B - MM1B
Mark scheme

6360
June 2014

Version/Stage V1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Copyright © 2014 AQA and its licensors. All rights reserved.
AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or marks and is for method and accuracy
E	mark is for explanation
Vorft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Mark	Total	Comment
(e)	$\begin{aligned} & T-3136=800 \times 0.05 \\ & T=3176=3180 \mathrm{~N}(\text { to } 3 \text { sf }) \end{aligned}$	$\begin{gathered} \text { M1A1F } \\ \text { A1 } \end{gathered}$	3	M1: Three term equation of motion for the skip with correct terms. Allow sign errors and their value of F from part (d). Must use mass of 800 kg . A1F: Correct equation with their value for F. A1: Correct T. Only accept 3176 or 3180.
(f)	$\begin{aligned} & P-3176=1700 \times 0.05 \\ & P=3261=3260 \mathrm{~N}(\text { to } 3 \text { sf }) \end{aligned}$ OR $\begin{aligned} & P-3136=2500 \times 0.05 \\ & P=3261=3260 \mathrm{~N}(\text { to } 3 \mathrm{sf}) \end{aligned}$	M1A1F A1 (M1A1F) (A1)	3 (3)	M1: Three term equation of motion for the van with correct terms. Allow sign errors and their value of T from part (e). Must use mass of 1700 kg . A1F: Correct equation. Follow through their value for T. A1: Correct P. Accept 3261. Allow 3265 or 3260 or 3270 from use of 3180 for T. M1: Three term equation of motion for the van and skip with correct terms. Allow sign errors and their value of F from part (d). Must use mass of 2500 kg . A1F: Correct equation. Follow through their value for F. A1: Correct P. Accept 3261. Allow 3265 or 3260 or 3270 from use of 3140 for F.
	Total		15	
				Use of $g=9.81$ gives: (d) 3139.2 (e) 3179.2 (f) 3264.2 Do not penalise use of 9.81 .

Q	Solution	Mark	Total	Comment
				Follow through mis-reads in this question.
5	$\begin{aligned} & m(4 \mathbf{i}+2 \mathbf{j})+k m(6 \mathbf{i}-2 \mathbf{j})=(m+k m)(5.2 \mathbf{i}-0.4 \mathbf{j}) \\ & 4 m+6 k m=5.2(m+k m) \\ & 4+6 k=5.2+5.2 k \\ & 0.8 k=1.2 \\ & k=\frac{1.2}{0.8}=1.5 \\ & \text { OR } \\ & 2 m-2 k m=-0.4(m+k m) \\ & 2-2 k=-0.4-0.4 k \\ & 2.4=1.6 k \\ & k=\frac{2.4}{1.6}=1.5 \end{aligned}$ OR $\begin{aligned} & -1.2 \mathbf{i}+2.4 \mathbf{j}=k(-0.8 \mathbf{i}+1.6 \mathbf{j}) \\ & 1.2^{2}+2.4^{2}=k^{2}\left(0.8^{2}+1.6^{2}\right) \\ & k^{2}=\frac{7.2}{3.2} \\ & k= \pm 1.5 \\ & k=1.5 \end{aligned}$		5	B1: Correct vector equation for conservation of momentum. Can be implied in later working by correct equation for one component. Condone missing brackets if later working correct. M1: Conservation of momentum equation for one component with correct terms, but allow sign errors. A1: Correct equation. Allow inclusion of \mathbf{i} or \mathbf{j} in equations. dM1: Valid method for solving for k. Working like $k=\frac{1.2 \mathbf{i}}{0.8 \mathbf{i}}=1.5$ scores dM0. A1: Correct value for k. CAO Candidates who work with both components and get two different values for k, should be treated as two solutions. (Mark both and take mean, rounding down.) M1: Forming equation for k using magnitudes of vectors. A1: Correct equation. dM1: Obtaining ± 1.5 A1: Selecting 1.5. Consistent use of weight instead of mass deduct 1 mark.
	Total		5	

Q	Solution	Mark	Total	Comment
				Candidates who use $\mathbf{a}=-0.4 \mathbf{i}+0.2 \mathbf{j}$ for both particles can gain all method marks but no A or B marks. Otherwise no MR or MC in this question.
7(a)	$\begin{aligned} \mathbf{r} & =(4 \mathbf{i}+2 \mathbf{j}) \times 10+\frac{1}{2}(-0.4 \mathbf{i}) \times 10^{2} \\ & =20 \mathbf{i}+20 \mathbf{j} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	M1: Use of $\mathbf{u} t+\frac{1}{2} \mathbf{a t}^{2}$ with a non-zero acceleration. A1: Correct position vector.
(b)	$\begin{gathered} \mathbf{r}_{A}=(4 \mathbf{i}+2 \mathbf{j}) t-0.2 t^{2} \mathbf{i} \\ \mathbf{r}_{B}=(0.4 \mathbf{i}+0.6 \mathbf{j}) t+0.1 t^{2} \mathbf{j}+11.2 \mathbf{i} \\ (4 \mathbf{i}+2 \mathbf{j}) t-0.2 t^{2} \mathbf{i}=(0.4 \mathbf{i}+0.6 \mathbf{j}) t+0.1 t^{2} \mathbf{j}+11.2 \mathbf{i} \\ 2 t=0.6 t+0.1 t^{2} \\ t^{2}-14 t=0 \\ (t=0) \text { or } t=14 \\ 4 t-0.2 t^{2}=0.4 t+11.2 \\ t^{2}-18 t+56=0 \\ t=4 \text { or } t=14 \\ \therefore t=14 \end{gathered}$ OR $\begin{gathered} 4 \times 14-0.2 \times 14^{2}=16.8 \\ 0.4 \times 14+11.2=16.8 \\ \therefore t=14 \end{gathered}$ THEN $\mathbf{r}=(4 \mathbf{i}+2 \mathbf{j}) \times 14-0.2 \times 14^{2} \mathbf{i}=16.8 \mathbf{i}+28 \mathbf{j}$	B1 B1 M1A1 A1 dM1A1 A1 (dM1) (A1) (A1)		B1: Seeing position vector for A, may be implied by later working if not seen explicitly. B1: Seeing position vector for B, may be implied by later working if not seen explicitly. M1: Forming an equation by equating either \mathbf{i} or \mathbf{j} components to form a quadratic equation. A1: Correct equation A1: Correct solution(s). dM1: Forming an equation by equating other components to form a quadratic equation. A1: Correct equation A1: Correct solutions and selection of common solution. (dM1): Substituting one nonzero value from their two solutions into the other component for both A and B. (A1): Obtaining two identical values. (A1):Concluding that $t=14$.
	Total		11	

Q	Solution	Mark	Total	Comment
				No MR or MC in this question.
8(a)	$\begin{aligned} & F=40 \times 9.8 \sin 30^{\circ}=196 \text { or } F=m g \sin 30^{\circ} \\ & R=40 \times 9.8 \cos 30^{\circ}=339.48 \text { or } R=m g \cos 30^{\circ} \\ & 40 \times 9.8 \sin 30^{\circ}=\mu \times 40 \times 9.8 \cos 30^{\circ} \\ & \mu=\frac{\sin 30^{\circ}}{\cos 30^{\circ}}=\tan 30^{\circ}=0.577 \\ & \text { OR } \\ & \mu=\frac{196}{339.48}=0.577 \end{aligned}$	M1A1 A1 dM1 A1	5	M1: Resolving parallel and perpendicular to the slope to obtain expressions for F and R. Allow consistent mixing of sin and cos. A1: Correct F. A1: Correct R. dM1: Use of $F=\mu R$ A1: Correct μ. Accept $\frac{1}{\sqrt{3}}$ or $\frac{\sqrt{3}}{3}$ or AWRT 0.577 or AWRT 0.578. NMS gives full marks. Complete solution with omission of g throughout with correct final answer scores SC4.
(b)(i)	$\begin{aligned} R & =X \sin 30^{\circ}+40 \times 9.8 \cos 30^{\circ} \\ (& =0.5 X+339.5) \end{aligned}$	M1A1	2	M1: Resolving perpendicular to the plane with three terms; R, $X \sin 30^{\circ}$ or $X \cos 30^{\circ}$ and $40 \mathrm{~g} \cos 30^{\circ}$ or $40 \mathrm{gsin} 30^{\circ}$, with consistent mixing of sin and cos. Allow sign errors. A1: Correct expression for R, may include m and g.
(b)(ii)	$X \cos 30^{\circ}-40 \times 9.8 \sin 30^{\circ}-F=40 \times 0.2$ $X \cos 30^{\circ}-196-\tan 30^{\circ}\left(0.5 X+392 \cos 30^{\circ}\right)=8$ $X=\frac{8+196+392 \cos 30^{\circ} \tan 30^{\circ}}{\cos 30^{\circ}-0.5 \tan 30^{\circ}}=692.8=693 \mathrm{~N} \text { (to 3sf) }$ Alternative format $\begin{aligned} & X \cos 30^{\circ}-40 \mathrm{~g} \sin 30^{\circ}-F=40 \times 0.2 \\ & X \cos 30^{\circ}-40 \mathrm{~g} \sin 30^{\circ}-\tan 30^{\circ}\left(0.5 X+40 \mathrm{~g} \cos 30^{\circ}\right)=8 \\ & \left.X=\frac{8+40 \mathrm{~g} \sin 30^{\circ}+40 \mathrm{~g} \cos 30^{\circ} \tan 30^{\circ}}{\cos 30^{\circ}-0.5 \tan 30^{\circ}}=692.8=693 \mathrm{~N} \text { (to } 3 \mathrm{sf}\right) \end{aligned}$	M1A1 dM1 dM1 A1	5	M1: Equation of motion with correct terms. Allow sign errors. A1: Correct equation. May be in terms of m and g. dM1: Substituting for F using $F=\mu R$, where R is in the form $a+b X$ where a and b are nonzero constants. dM1: Solving for X. A1: Correct value for X. Accept 692 or AWRT 693.
	Total		12	
	TOTAL		75	
				Use of $g=9.81$ gives: (b) (i) $0.5 \mathrm{X}+339.8$ (b) (ii) $693.5=694$ (to 3 sf) Do not penalise use of 9.81 .

